Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review

Authors

[ 1 ] Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2023

Published in

Energies

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 19

Article type

scientific article

Publication language

english

Keywords
EN
  • gas turbine
  • materials characterisation
  • ammonia
  • hydrogen
  • blades
  • fuels
  • combustion
  • temperature
  • technology challenges
  • energy
Abstract

EN This article reviews the critical role of material selection and design in ensuring efficient performance and safe operation of gas turbine engines fuelled by ammonia–hydrogen. As these energy fuels present unique combustion characteristics in turbine combustors, the identification of suitable materials becomes imperative. Detailed material characterisation is indispensable for discerning defects and degradation routes in turbine components, thereby illuminating avenues for improvement. With elevated turbine inlet temperatures, there is an augmented susceptibility to thermal degradation and mechanical shortcomings, especially in the high-pressure turbine blade—a critical life-determining component. This review highlights challenges in turbine design for ammonia– hydrogen fuels, addressing concerns like ammonia corrosion, hydrogen embrittlement, and stress corrosion cracking. To ensure engine safety and efficacy, this article advocates for leveraging advanced analytical techniques in both material development and risk evaluation, emphasising the interplay among technological progress, equipment specifications, operational criteria, and analysis methods.

Pages (from - to)

6973-1 - 6973-46

DOI

10.3390/en16196973

URL

https://www.mdpi.com/1996-1073/16/19/6973

Comments

article number: 6973

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.