Poisoning Attacks Against Communication and Computing Task Classification And Detection Techniques
[ 1 ] Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ 2 ] Instytut Radiokomunikacji, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee
2024
scientific article
english
- data poisoning
- k-means algorithm
- k-nearest neighbors algorithm
- clustering
- edge computing
EN Machine learning-based classification algorithms allow communication and computing (2C) task offloading from the end devices to the edge computing network servers. In this paper, we consider task classification based on the hybrid k-means and k′ -nearest neighbors algorithms. Moreover, we examine the poisoning attacks on such ML algorithms, namely noise-like jamming and targeted data feature falsification, and their impact on the effectiveness of 2C task allocation. Then, we also present two anomaly detection methods using noise training and the silhouette score test to detect the poisoned samples and mitigate their impact. Our simulation results show that these attacks have a fatal effect on classification in feature areas where the decision boundary is unclear. They also demonstrate the effectiveness of our countermeasures against the considered attacks.
338-1 - 338-19
CC BY (attribution alone)
open journal
final published version
at the time of publication
100
3,4 [List 2023]