Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Influence of the type of biocompatible polymer in the shell of magnetite nanoparticles on their interaction with DPPC in two-component Langmuir monolayers

Authors

[ 1 ] Instytut Badań Materiałowych i Inżynierii Kwantowej, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee | [ S ] student

Scientific discipline (Law 2.0)

[2.8] Materials engineering
[7.7] Physical sciences

Year of publication

2024

Published in

Journal of Physical Chemistry B

Journal year: 2024 | Journal volume: vol. 128 | Journal number: iss. 3

Article type

scientific article

Publication language

english

Abstract

EN Magnetite nanoparticles (MNPs) are attractive nanomaterials for applications in magnetic resonance imaging, targeted drug delivery, and anticancer therapy due to their unique properties such as nontoxicity, wide chemical affinity, and intrinsic superparamagnetism. Their functionalization with polymers such as chitosan or poly(vinyl alcohol) (PVA) can not only improve their biocompatibility and biodegradability but it also plays an important role in their interactions with biological cells. In this work, the effect of the functionalization of MNPs with chitosan, PVA, and their blend on model cell membranes formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) using a Langmuir technique was studied. The studies performed showed that the type of biocompatible polymer in the MNP shell plays a crucial role in the effectiveness of its adsorption process into the model cell membrane. Modification of MNPs with chitosan facilitates significantly more effective adsorption than coating them with PVA or with a chitosan and PVA blend. The presence of all the investigated MNPs in the DPPC monolayer at low concentrations does not affect its thermodynamic state, fluidity, or morphology, which is promising in terms of their biocompatibility. On the other hand, their high concentration (molar fraction above ≈0.05) exerts a disruptive effect on the model cell membrane and results in their aggregation, leading probably to the loss of their superparamagnetic properties essential for nanomedicine.

Pages (from - to)

781 - 794

DOI

10.1021/acs.jpcb.3c05964

URL

https://doi.org/10.1021/acs.jpcb.3c05964

Ministry points / journal

140

Impact Factor

3,3 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.