Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

A Survey on Reduction of Energy Consumption in Fog Networks—Communications and Computations

Authors

[ 1 ] Instytut Radiokomunikacji, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.3] Information and communication technology

Year of publication

2024

Published in

Sensors

Journal year: 2024 | Journal volume: vol. 24 | Journal number: iss. 18

Article type

review article

Publication language

english

Keywords
EN
  • survey
  • fog network
  • optimization
  • energy-efficiency
  • edge computing
Abstract

EN Fog networking has become an established architecture addressing various applications with strict latency, jitter, and bandwidth constraints. Fog Nodes (FNs) allow for flexible and effective computation offloading and content distribution. However, the transmission of computational tasks, the processing of these tasks, and finally sending the results back still incur energy costs. We survey the literature on fog computing, focusing on energy consumption. We take a holistic approach and look at energy consumed by devices located in all network tiers from the things tier through the fog tier to the cloud tier, including communication links between the tiers. Furthermore, fog network modeling is analyzed with particular emphasis on application scenarios and the energy consumed for communication and computation. We perform a detailed analysis of model parameterization, which is crucial for the results presented in the surveyed works. Finally, we survey energy-saving methods, putting them into different classification systems and considering the results presented in the surveyed works. Based on our analysis, we present a classification and comparison of the fog algorithmic models, where energy is spent on communication and computation, and where delay is incurred. We also classify the scenarios examined by the surveyed works with respect to the assumed parameters. Moreover, we systematize methods used to save energy in a fog network. These methods are compared with respect to their scenarios, objectives, constraints, and decision variables. Finally, we discuss future trends in fog networking and how related technologies and economics shall trade their increasing development with energy consumption.

Pages (from - to)

6064-1 - 6064-59

DOI

10.3390/s24186064

URL

https://www.mdpi.com/1424-8220/24/18/6064

Comments

Article number: 6064

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

50

Impact Factor

3,4 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.