Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Surrogate regret bounds for generalized classification performance metrics

Authors

[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] employee

Year of publication

2017

Published in

Machine Learning

Journal year: 2017 | Journal volume: vol. 106 | Journal number: no. 4

Article type

scientific article

Publication language

english

Keywords
EN
  • generalized performance metric
  • regret bound
  • surrogate loss function
  • binary classification
  • multilabel classification
  • f-measure
  • jaccard similarity
  • am measure
Pages (from - to)

549 - 572

DOI

10.1007/s10994-016-5591-7

Ministry points / journal

35

Ministry points / journal in years 2017-2021

35

Impact Factor

1,855

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.