W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Modeling Contingent Decision Behavior: A Bayesian Nonparametric Preference-Learning Approach

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2023

Opublikowano w

INFORMS Journal on Computing

Rocznik: 2023 | Tom: vol. 35 | Numer: no. 4

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Streszczenie

EN We propose a preference-learning algorithm for uncovering Decision Makers’ (DMs’) contingent evaluation strategies in the context of multiple criteria sorting. We assume the preference information in the form of holistic assignment examples derived from the analysis of alternatives’ performance vectors and textual descriptions. We characterize the decision policies using a mixture of threshold-based, value-driven preference models and associated latent topics. The latter serve as the stimuli underlying the contingency in decision behavior. Such a probabilistic model is constructed by using a flexible and nonparametric Bayesian framework. The proposed method adopts a hierarchical Dirichlet process as the prior so that a group of DMs can share a countably infinite number of contingent models and topics. For all DMs, it automatically identifies the components representing their evaluation strategies adequately. The posterior is summarized by using the Hamiltonian Monte Carlo sampling method. We demonstrate the method’s practical usefulness in a real-world recruitment problem considered by a Chinese IT company. We also compare the approach with counterparts that use a single preference model, implement the parametric framework, or consider each DM’s preferences individually. The results indicate that our approach performs favorably in both interpreting DMs’ contingent decision behavior and recommending decisions on new alternatives. Furthermore, the approach’s performance and robustness are investigated through a computational experiment involving real-world data sets.

Data udostępnienia online

06.04.2023

Strony (od-do)

764 - 785

DOI

10.1287/ijoc.2023.1292

URL

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2023.1292

Punktacja Ministerstwa / czasopismo

100

Impact Factor

2,3

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.