W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Towards Differentiating Between Failures and Domain Shifts in Industrial Data Streams

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • data streams
  • domain adaptation
  • failure detection
  • Industry 4.0
  • explainable AI
Streszczenie

EN Anomaly and failure detection methods are crucial in identifying deviations from normal system oper- ational conditions, which allows for actions to be taken in advance, usually preventing more serious damages. Long-lasting deviations indicate failures, while sudden, isolated changes in the data indicate anomalies. However, in many practical applications, changes in the data do not always represent ab- normal system states. Such changes may be recognized incorrectly as failures, while being a normal evolution of the system, e.g. referring to characteristics of starting the processing of a new product, i.e. realizing a domain shift. Therefore, distinguishing between failures and such ”healthy” changes in data distribution is critical to ensure the practical robustness of the system. In this paper, we propose a method that not only detects changes in the data distribution and anomalies but also allows us to distinguish between failures and normal domain shifts inherent to a given process. The proposed method consists of a modified Page-Hinkley changepoint detector for identification of the domain shift and possible failures and supervised domain-adaptation-based algorithms for fast, online anomaly detection. These two are coupled with an explainable artificial intelligence (XAI) component that aims at helping the human operator to finally differentiate between domain shifts and failures. The method is illustrated by an experiment on a data stream from the steel factory.

URL

https://ceur-ws.org/Vol-3765/Camera_Ready_Paper-04.pdf

Książka

Proceedings of Workshop on Embracing Human-Aware AI in Industry 5.0 (HAII5.0 2024) co-located with the 27th European Conference on Artificial Intelligence (ECAI 2024), Santiago de Compostela, Spain, 19 October 2024

Zaprezentowany na

Workshop on Embracing Human-Aware AI in Industry 5.0 (HAII5.0 2024) co-located with the 27th European Conference on Artificial Intelligence(ECAI 2024), 19.10.2024, Santiago de Compostela, Spain

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

witryna wydawcy

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

przed opublikowaniem

Punktacja Ministerstwa / rozdział

5

Punktacja Ministerstwa / konferencja (CORE)

140

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.