W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

ML-Based Maintenance and Control Process Analysis, Simulation, and Automation - A Review

Autorzy

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.9] Inżynieria mechaniczna

Rok publikacji

2024

Opublikowano w

Applied Sciences

Rocznik: 2024 | Tom: vol. 14 | Numer: iss. 19

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • machine learning
  • deep learning
  • Industry 4.0
  • Industry 5.0
  • control
  • signal classification
  • EEG
  • BCI
Streszczenie

EN Automation and digitalization in various industries towards the Industry 4.0/5.0 paradigms are rapidly progressing thanks to the use of sensors, Industrial Internet of Things (IIoT), and advanced fifth generation (5G) and sixth generation (6G) mobile networks supported by simulation and automation of processes using artificial intelligence (AI) and machine learning (ML). Ensuring the continuity of operations under different conditions is becoming a key factor. One of the most frequently requested solutions is currently predictive maintenance, i.e., the simulation and automation of maintenance processes based on ML. This article aims to extract the main trends in the area of ML-based predictive maintenance present in studies and publications, critically evaluate and compare them, and define priorities for their research and development based on our own experience and a literature review. We provide examples of how BCI-controlled predictive maintenance due to brain–computer interfaces (BCIs) play a transformative role in AI-based predictive maintenance, enabling direct human interaction with complex systems.

Data udostępnienia online

28.09.2024

Strony (od-do)

8774-1 - 8774-29

DOI

10.3390/app14198774

URL

https://www.mdpi.com/2076-3417/14/19/8774

Uwagi

Article Number: 8774

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

100

Impact Factor

2,5 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.