Representation of Propositional Data for Collaborative Filtering
[ 1 ] Instytut Automatyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ P ] pracownik
2013
referat
angielski
EN State-of-the-art approaches to collaborative filtering are based on the use of an input matrix that represents each user profile as a vector in a space of items and, analogically, each item as a vector in a space of users. When the behavioral input data have the form of (userX, likes, itemY) and (userX, dislikes, itemY) triples, one has to propose a bi-relational data representation that is more flexible than the ordinary user-item ratings matrix. We propose to use a matrix, in which columns represent RDF-like triples and rows represent users, items, and relations. We show that the proposed behavioral data representation based on the use of an element-fact matrix, combined with reflective matrix processing, enables outperforming state-of-the- art collaborative filtering methods based on the use of a ’standard’ user-item matrix.
385 - 392