Tensor-Based Modeling of Temporal Features for Big Data CTR Estimation
[ 1 ] Instytut Automatyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ 2 ] Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ P ] pracownik
2017
rozdział w monografii naukowej / referat
angielski
- Big data
- Multidimensional data modeling
- Context-aware recommendation
- Data extraction
- Data mining
- Logistic regression
- Click-through rate estimation
- WWW
- Real-Time Bidding
EN In this paper we propose a simple tensor-based approach to temporal features modeling that is applicable as means for logistic regression (LR) enhancement. We evaluate experimentally the performance of an LR system based on the proposed model in the Click-Through Rate (CTR) estimation scenario involving processing of very large multi-attribute data streams. We compare our approach to the existing approaches to temporal features modeling from the perspective of the Real-Time Bidding (RTB) CTR estimation scenario. On the basis of an extensive experimental evaluation, we demonstrate that the proposed approach enables achieving an improvement of the quality of CTR estimation. We show this improvement in a Big Data application scenario of the Web user feedback prediction realized within an RTB Demand-Side Platform.
16 - 27
20
WoS (15)