Context-aware Recognition of Drivable Terrain with Automated Parameters Estimation
[ 1 ] Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Wydział Elektryczny, Politechnika Poznańska | [ P ] pracownik
2019
rozdział w monografii naukowej / referat
angielski
- vision
- terrain classification
- Conditional Random Field
EN This paper deals with the terrain classification problem for autonomous service robots in semi-structured outdoor environments. The aim is to recognize the drivable terrain in front of a robot that navigates on roads of different surfaces, avoiding areas that are considered non-drivable. Since the system should be robust to such factors as changing lighting conditions, mud and fallen leaves, we employ multi-sensor perception with a monocular camera and a 2D laser scanner. The labeling of the terrain obtained from a Random Trees classifier is refined by context-aware inference using the Conditional Random Field. We demonstrate that automatic learning of the parameters for Conditional Random Fields improves results in comparison to similar approaches without the context-aware inference or with parameters set by hand.
626 - 638
20