W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Spectrum Sensing and Prediction for 5G Radio

Autorzy

[ 1 ] Instytut Radiokomunikacji, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2021

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • spectrum sensing
  • spectrum prediction
  • machine learning
  • 5G
  • LTE
  • convolutional neural network
  • recurrent neural network
  • neural network
  • deep learning
Streszczenie

EN In future wireless networks, it is crucial to find a way to precisely evaluate the degree of spectrum occupation and the exact parameters of free spectrum band at a given moment. This approach enables a secondary user (SU) to dynamically access the spectrum without interfering primary user’s (PU) transmission. The known methods of signal detection or spectrum sensing (SS) enable making decision on spectrum occupancy by SU. The machine learning (ML), especially deep learning (DL) algorithms have already proved their ability to improve classic SS methods. However, SS can be insufficient to use the free spectrum efficiently. As an answer to this issue, the prediction of future spectrum state has been introduced. In this paper, three DL algorithms, namely NN, RNN and CNN have been proposed to accurately predict the 5G spectrum occupation in the time and frequency domain with the accuracy of a single resource block (RB). The results have been obtained for two different datasets: the 5G downlink signal with representation of daily traffic fluctuations and the sensor-network uplink signal characteristic for IoT. The obtained results prove DL algorithms usefulness for spectrum occupancy prediction and show significant improvement in detection and prediction for both low signal-to-noise ratio (SNR) and for high SNR compared with reference detection/prediction method discussed in the paper.

Strony (od-do)

176 - 194

DOI

10.1007/978-3-030-72802-1_13

URL

https://link.springer.com/chapter/10.1007/978-3-030-72802-1_13

Książka

Big Data Technologies and Applications : 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings

Zaprezentowany na

10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, 11.12.2020

Punktacja Ministerstwa / rozdział

20

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.