Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Identification of tool wear using acoustic emission signal and machine learning methods

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee | [ D ] phd student

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2021

Published in

Precision Engineering

Journal year: 2021 | Journal volume: vol. 72

Article type

scientific article

Publication language

english

Keywords
EN
  • end milling
  • tool wear
  • acoustic emission
  • machine learning
Date of online publication

05.08.2021

Pages (from - to)

738 - 744

DOI

10.1016/j.precisioneng.2021.07.019

URL

https://www.sciencedirect.com/science/article/pii/S0141635921001884?via%3Dihub

Ministry points / journal

200

Ministry points / journal in years 2017-2021

200

Impact Factor

3,315

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.