Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production

Authors

[ 1 ] Instytut Maszyn Roboczych i Pojazdów Samochodowych, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport

Year of publication

2021

Published in

Energies

Journal year: 2021 | Journal volume: vol. 14 | Journal number: no. 24

Article type

scientific article

Publication language

english

Keywords
EN
  • lignin
  • emission reduction
  • wood biofuel
  • combustion
  • ring-economy
Abstract

EN Energy (including thermal) needs are growing rapidly worldwide thus leading to increased energy production. Considering stricter requirements for the employment of non-renewable energy sources, the use of biofuel in energy facilities appears as one of the best options, having high potential for growth that will increase in the long run both in the Baltic region and the European Union as a whole. This publication investigates the possibilities of using various blends of biofuel containing lignin for heat production and emissions to the air during combustion processes. The paper examines the chemical composition of lignin and bottom ash and explores the impact of a different ratio of lignin in the fuel mixture, the effect of the power of biofuel combustion plants (boilers) and the influence of fuel supply to the combustion chamber on gaseous pollutants (CO, NOx, SO2) and particulate matter emissions. The results of the conducted study demonstrate that, in contrast to pure lignin, the concentrations of alkali metals, boron and, to a lesser extent, nickel and chlorine have increased the most in bottom ash. The use of lignin can effectively reduce the need for conventional biofuel by 30–100% and to increase the temperature of exhaust gases. The lowest emissions have been observed using a mixture of 30% of lignin and biofuel at the lowest range of power (2.5–4 MW). Under the optimal oxygen/temperature mode, carbon monoxide concentrations are approximately 20 mg/Nm3 and those of nitrogen oxides–500 mg/Nm3. Particulate matter emissions reach 150 mg/Nm3, and hence applying air treatment equipment is required.

Pages (from - to)

8471-1 - 8471-18

DOI

10.3390/en14248471

URL

https://www.mdpi.com/1996-1073/14/24/8471/htm

Comments

article number : 8471

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,252

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.