Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download BibTeX


Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy


[ 1 ] Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ 2 ] Instytut Fizyki, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering

Year of publication


Published in

International Journal of Molecular Sciences

Journal year: 2022 | Journal volume: vol. 23 | Journal number: iss. 1

Article type

scientific article

Publication language


  • plasmonic
  • functionalization
  • surface-enhanced spectroscopy

EN Robust and versatile strategies for the development of functional nanostructured materials often focus on assemblies of metallic nanoparticles. Research interest in such assemblies arises due to their potential applications in the fields of photonics and sensing. Metallic nanoparticles have received considerable recent attention due to their connection to the widely studied phenomenon of localized surface plasmon resonance. For instance, plasmonic hot spots can be observed within their assemblies. A useful form of spectroscopy is based on surface-enhanced Raman scattering (SERS). This phenomenon is a commonly used in sensing techniques, and it works using the principle that scattered inelastic light can be greatly enhanced at a surface. However, further research is required to enable improvements to the SERS techniques. For example, one question that remains open is how to design uniform, highly reproducible, and efficiently enhancing substrates of metallic nanoparticles with high structural precision. In this review, a general overview on nanoparticle functionalization and the impact on nanoparticle assembly is provided, alongside an examination of their applications in surface-enhanced Raman spectroscopy.

Date of online publication


Pages (from - to)

291-1 - 291-24





Article Number: 291

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal


Impact Factor


This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.