Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Modelling the Kerf Angle, Roughness and Waviness of the Surface of Inconel 718 in an Abrasive Water Jet Cutting Process

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 15

Article type

scientific article

Publication language

english

Keywords
EN
  • surface roughness
  • surface waviness
  • abrasive water jet cutting
  • kerf angle
  • modelling
Abstract

EN An experimental study of the abrasive water jet cutting process of Inconel 718 alloy samples with varying values of cutting speed, abrasive flow rate and cutting material height was carried out. Surface roughness and waviness were measured at different cutting depths, and the variation of the kerf angle was studied. It was shown that the depth of cut has the greatest effect on roughness and waviness. The height of the sample has no impact on the roughness and waviness at a particular depth of cut. As the depth of cut increases, in most cases, roughness and waviness increase as well. It has been proven that the cutting speed has a negligible effect on surface roughness, but it has a significant effect on surface waviness. The waviness, on the other hand, depends only slightly on the abrasive flow. It has been proven that the kerf angle does not depend on the abrasive flow. The kerf angle depends mainly on the height of the sample. The models were developed for the parameters of roughness Ra and Rz, waviness Wa and Wz and kerf angle. All models were calculated without separating the surface into smooth and rough cutting regions.

Date of online publication

27.07.2023

Pages (from - to)

5288-1 - 5288-17

DOI

10.3390/ma16155288

URL

https://www.mdpi.com/1996-1944/16/15/5288

Comments

Article Number: 5288

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.