Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Tomographic and Tension Analysis of Polypropylene Reinforced with Carbon Fiber Fabric by Injection Molding

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 18

Article type

scientific article

Publication language

english

Keywords
EN
  • PP
  • CF reinforcement
  • over-injection molding
  • composites
Abstract

EN The use of thermoplastic materials has had significant growth in recent years. However, with great mechanical requirements, thermoplastics have limitations to their use. To improve these restrictions, these materials are reinforced to obtain better properties. Polypropylene is one of the most versatile polymers and is used in almost all modern industries. Thus, the aim of this study is to create composite materials that offer performance for various industrial fields using carbon fiber fabric reinforcement, which is an inexpensive material widely used by the aerospace, automotive, and marine industries. The samples are produced by the over-injection molding of polypropylene. The investigation is focused on the impact of two critical control parameters in the injection molding process: temperature and pressure. Twelve experiments have therefore been considered, taking into account the combination of three factors: the presence or absence of carbon fiber fabric reinforcement, three levels of temperature (200 °C, 220 °C, and 240 °C), and two injection pressures (5000 kPa and 10,000 kPa). To evaluate the influence of these factors, three analyses were carried out: first, on the samples’ shrinkage using a portable metrology-grade 3D laser scanner; second, on the internal defects using computed tomography (CT); and third, on the mechanical properties with tensile tests. From the results obtained, it is observed that the mold shrinkage fell slightly when PP samples were reinforced with carbon fiber, with both materials (PP and carbon-fiber-reinforced PP) having linear behavior with temperature. It is also noticed that polypropylene behaves as a crystalline material when processed at higher temperatures and pressures. From tests on the mechanical properties, it is concluded that the mean yield strength of PP-CF for injection temperatures of 220 °C and 240 °C represents an increase of 43% compared to the non-reinforced material.

Date of online publication

15.09.2023

Pages (from - to)

6231-1 - 6231-19

DOI

10.3390/ma16186231

URL

https://www.mdpi.com/1996-1944/16/18/6231

Comments

Article Number: 6231

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.