Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.


Download BibTeX


Optimization of Isocyanate Content in PF/pMDI Adhesive for the Production of High-Performing Particleboards


[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering

Year of publication


Published in


Journal year: 2023 | Journal volume: vol. 15 | Journal number: iss. 24

Article type

scientific article

Publication language


  • PF/pMDI adhesive
  • particleboard
  • isocyanate content
  • hybrid resin

EN Due to the fact that impregnation with fire retardant usually reduces the strength of the produced particleboards, this research was carried out to investigate whether it is possible to use phenol–formaldehyde (PF) resin modified using various amounts (0%, 5%, 10%, 15%, and 20%) of polymeric 4,4′-methylene diphenyl diisocyanate (pMDI) for this purpose. The need to optimize the addition of pMDI is particularly important due to health and environmental aspects and high price. Furthermore, the curing process of hybrid resins is still not fully explained, especially in the case of small loadings. Manufactured particleboards differed in the share of impregnated particles (50% and 100%). The mixture of potassium carbonate and urea was used as the impregnating solution. Based on the outcomes of hybrid resins properties, it was found that the addition of pMDI leads to the increase in solid content, pH, and viscosity of the mixtures, to the improvement in resin reactivity determined using differential scanning calorimetry and to the decrease in thermal stability in the cured state evaluated using thermogravimetric analysis. Moreover, particleboard property results have shown that using impregnated particles (both 50% and 100%) decreased the strength of manufactured boards bonded using neat PF resin. However, the introduction of pMDI allowed us to compensate for the negative impact of fire-retardant-treated wood and it was found that the optimal loading of pMDI for the board containing 50% of impregnated particles is 5% and for board made entirely of treated wood it is 10%.

Date of online publication


Pages (from - to)

4645-1 - 4645-14





Article Number: 4645

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal


Impact Factor


This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.