W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Poisoning Attacks Against Communication and Computing Task Classification And Detection Techniques

Autorzy

[ 1 ] Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ 2 ] Instytut Radiokomunikacji, Wydział Informatyki i Telekomunikacji, Politechnika Poznańska | [ SzD ] doktorant ze Szkoły Doktorskiej | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.3] Informatyka techniczna i telekomunikacja

Rok publikacji

2024

Opublikowano w

Sensors

Rocznik: 2024 | Tom: vol. 24 | Numer: iss. 2

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • data poisoning
  • k-means algorithm
  • k-nearest neighbors algorithm
  • clustering
  • edge computing
Streszczenie

EN Machine learning-based classification algorithms allow communication and computing (2C) task offloading from the end devices to the edge computing network servers. In this paper, we consider task classification based on the hybrid k-means and k′ -nearest neighbors algorithms. Moreover, we examine the poisoning attacks on such ML algorithms, namely noise-like jamming and targeted data feature falsification, and their impact on the effectiveness of 2C task allocation. Then, we also present two anomaly detection methods using noise training and the silhouette score test to detect the poisoned samples and mitigate their impact. Our simulation results show that these attacks have a fatal effect on classification in feature areas where the decision boundary is unclear. They also demonstrate the effectiveness of our countermeasures against the considered attacks.

Strony (od-do)

338-1 - 338-19

DOI

10.3390/s24020338

URL

https://doi.org/10.3390/s24020338

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

100

Impact Factor

3,4 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.