A binary ionogel electrolyte for the realization of an all solid-state electrical double-layer capacitor performing at low temperature
[ 1 ] Instytut Chemii i Elektrochemii Technicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ D ] phd student | [ P ] employee
2024
Journal year: 2024 | Journal volume: early view | Journal number: early view
scientific article
english
- all solid-state capacitor
- binary ionic liquid
- binary ionogel membrane
- hierarchical micro/mesoporous carbon
- low-temperature operation
- PVdF-HFP matrix
EN Over the last years, solid-state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double-layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel-based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture-free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1 ethyl 3-methylimidazolium bis(fluorosulfonyl)imide and 1 ethyl 3-methylimidazolium tetrafluoroborate - [EMIm][BF4]0.5[FSI]0.5 - into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm-1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm = -16 °C and -7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at -101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below -20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 µm thick binary ionogel separator and electrodes made from a hierarchical micro-/mesoporous MgO-templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from -40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg-1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid-state energy storage devices operating at subambient temperatures in extreme environments.
26.05.2024
e202400596-1 - e202400596-12
Article number: e202400596
140
7,5 [List 2023]