Data-Driven Rotary Machine Fault Diagnosis Using Multisensor Vibration Data with Bandpass Filtering and Convolutional Neural Network for Signal-to-Image Recognition
[ 1 ] Instytut Robotyki i Inteligencji Maszynowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] pracownik
[2.2] Automatyka, elektronika, elektrotechnika i technologie kosmiczne
2024
artykuł naukowy
angielski
- machine fault diagnosis
- vibrations of rotary machine
- image-based diagnostics
- 6-DOF IMU sensor
- interpretability in machine learning
- bandpass filter
- digital filter
- signal to image
- data-driven fault diagnosis
- multisensor data fusion
EN This paper proposes a novel data-driven method for machine fault diagnosis, named multisensor-BPF-Signal2Image-CNN2D. This method uses multisensor data, bandpass filtering (BPF), and a 2D convolutional neural network (CNN2D) for signal-to-image recognition. The proposed method is particularly suitable for scenarios where traditional time-domain analysis might be insufficient due to the complexity or similarity of the data. The results demonstrate that the multisensor-BPF-Signal2Image-CNN2D method achieves high accuracy in fault classification across the three datasets (constant-velocity fan imbalance, variable-velocity fan imbalance, Case Western Reserve University Bearing Data Center). In particular, the proposed multisensor method exhibits a significantly faster training speed compared to the reference IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods, which use the signal-to-image approach, requiring fewer iterations to achieve the desired level of accuracy. The interpretability of the model is also explored. This research demonstrates the potential of bandpass filters in the signal-to-image approach with a CNN2D to be robust and interpretable in selected frequency bandwidth machine fault diagnosis using multiple sensor data.
2940-1 - 2940-20
Article number: 2940
CC BY (uznanie autorstwa)
otwarte czasopismo
ostateczna wersja opublikowana
w momencie opublikowania
publiczny
100
2,6 [Lista 2023]