Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Investigating the Effect of Perforations on the Load-Bearing Capacity of Cardboard Packaging

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering, geodesy and transport

Year of publication

2024

Published in

Materials

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 17

Article type

scientific article

Publication language

english

Keywords
EN
  • corrugated cardboard
  • perforations
  • box compression test
  • finite element method
  • strength analysis
Abstract

EN The impact of perforation patterns on the compressive strength of cardboard packaging is a critical concern in the packaging industry, where optimizing material usage without compromising structural integrity is essential. This study aims to investigate how different perforation designs affect the load-bearing capacity of cardboard boxes. Utilizing finite element method (FEM) simulations, we assessed the compressive strength of packaging made of various types of corrugated cardboards, including E, B, C, EB, and BC flutes with different heights. Mechanical testing was conducted to obtain accurate material properties for the simulations. Packaging dimensions were varied to generalize the findings across different sizes. Results showed that perforation patterns significantly influenced the compressive strength, with reductions ranging from 14% to 43%, compared to non-perforated packaging. Notably, perforations on multiple walls resulted in the highest strength reductions. The study concludes that while perforations are necessary for functionality and aesthetics, their design must be carefully considered to minimize negative impacts on structural integrity. These findings provide valuable insights for designing more efficient and sustainable packaging solutions in the industry.

Date of online publication

25.08.2024

Pages (from - to)

4205-1 - 4205-13

DOI

10.3390/ma17174205

URL

https://www.mdpi.com/1996-1944/17/17/4205

Comments

Article Number: 4205

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.