W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz plik Pobierz BibTeX

Tytuł

Multi-Objective Optimization of Resilient, Sustainable, and Safe Urban Bus Routes for Tourism Promotion Using a Hybrid Reinforcement Learning Algorithm

Autorzy

[ 1 ] Instytut Logistyki, Wydział Inżynierii Zarządzania, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[6.6] Nauki o zarządzaniu i jakości

Rok publikacji

2024

Opublikowano w

Mathematics

Rocznik: 2024 | Tom: vol. 12 | Numer: iss. 14

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • urban transportation
  • multi-objective optimization
  • resilience
  • sustainability
  • hybrid metaheuristic algorithm
Streszczenie

EN Abstract: Urban transportation systems in tourism-centric cities face challenges from rapid urbanization and population growth. Efficient, resilient, and sustainable bus route optimization is essential to ensure reliable service, minimize environmental impact, and maintain safety standards. This study presents a novel Hybrid Reinforcement Learning-Variable Neighborhood Strategy Adaptive Search (H-RL-VaNSAS) algorithm for multi-objective urban bus route optimization. Our mathematical model maximizes resilience, sustainability, tourist satisfaction, and accessibility while minimizing total travel distance. H-RL-VaNSAS is evaluated against leading optimization methods, including the Crested Porcupine Optimizer (CPO), Krill Herd Algorithm (KHA), and Salp Swarm Algorithm (SSA). Using metrics such as Hypervolume and the Average Ratio of Pareto Optimal Solutions, H-RL-VaNSAS demonstrates superior performance. Specifically, H-RL-VaNSAS achieved the highest resilience index (550), sustainability index (370), safety score (480), tourist preferences score (300), and accessibility score (2300), while minimizing total travel distance to 950 km. Compared to other methods, H-RL-VaNSAS improved resilience by 12.24–17.02%, sustainability by 5.71–12.12%, safety by 4.35–9.09%, tourist preferences by 7.14–13.21%, accessibility by 4.55–9.52%, and reduced travel distance by 9.52–17.39%. This research offers a framework for designing efficient, resilient, and sustainable public transit systems that align with urban planning and transportation goals. The integration of reinforcement learning with VaNSAS significantly enhances optimization capabilities, providing a valuable tool for mathematical and urban transportation research communities.

Strony (od-do)

2283-1 - 2283-35

DOI

10.3390/math12142283

URL

https://www.mdpi.com/2227-7390/12/14/2283

Uwagi

Article number: 2283

Typ licencji

CC BY-NC (uznanie autorstwa - użycie niekomercyjne)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Data udostępnienia

22.07.2024

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Pełny tekst artykułu

Pobierz plik

Poziom dostępu do pełnego tekstu

publiczny

Punktacja Ministerstwa / czasopismo

20

Impact Factor

2,3 [Lista 2023]

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.