Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Chapter

Download BibTeX

Title

Computer estimation of plastic strain localization and failure for large strain rates using viscoplasticity

Authors

[ 1 ] Instytut Konstrukcji Budowlanych, Wydział Budownictwa i Inżynierii Środowiska, Politechnika Poznańska | [ P ] employee

Year of publication

2014

Chapter type

chapter in monograph

Publication language

english

Abstract

EN The problem of modelling extreme dynamic events for metallic materials including strain rates over 107 s-1 and temperatures reaching melting point is still vivid in theoretical, applied and computational mechanics. Such thermomechanical processes are highly influenced by elasto-viscoplastic wave effects (their propagation and interaction) and varying initial anisotropy caused by existing defects in metals structure like microcracks, microvoids, mobile and immobile dislocations densities being together a cause of overall induced anisotropy during deformation (from the point of view of meso-macro continuum mechanics approach). It should be emphasised, that the most reliable way for estimation of such processes needs nowadays a complex phenomenological models due to limitations of current experimental techniques (it is still not possible to measure the evolution of crucial quantities e.g. temperature for extreme dynamic processes) and computational capabilities. Within this document we consider recent achievements of Perzyna's type viscoplasticity theory for metallic materials accounting for anisotropic description of damage suitable for modelling plastic strain localization and failure for large strain rates.

Pages (from - to)

209 - 244

DOI

10.1007/978-3-7091-1768-2_5

URL

https://link.springer.com/chapter/10.1007/978-3-7091-1768-2_5

Book

Constitutive relations under impact loadings : experiments, theoretical and numerical aspects

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.