Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Dynamics of Space-Fractional Euler-Bernoulli and Timoshenko Beams

Authors

[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.7] Civil engineering and transport

Year of publication

2021

Published in

Materials

Journal year: 2021 | Journal volume: vol. 14 | Journal number: no. 8

Article type

scientific article

Publication language

english

Keywords
EN
  • free vibration
  • non-local model
  • fractional calculus
  • beam
Abstract

EN This paper investigates the dynamics of the beam-like structures whose response manifests a strong scale effect. The space-Fractional Euler–Bernoulli beam (s-FEBB) and space-Fractional Timoshenko beam (s-FTB) models, which are suitable for small-scale slender beams and small-scale thick beams, respectively, have been extended to a dynamic case. The study provides appropriate governing equations, numerical approximation, detailed analysis of free vibration, and experimental validation. The parametric study presents the influence of non-locality parameters on the frequencies and shape of modes delivering a depth insight into a dynamic response of small scale beams. The comparison of the s-FEBB and s-FTB models determines the applicability limit of s-FEBB and indicates that the model (also the classical one) without shear effect and rotational inertia can only be applied to beams significantly slender than in a static case. Furthermore, the validation has confirmed that the fractional beam model exhibits very good agreement with the experimental results existing in the literature—for both the static and the dynamic cases. Moreover, it has been proven that for fractional beams it is possible to establish constant parameters of non-locality related to the material and its microstructure, independent of beam geometry, the boundary conditions, and the type of analysis (with or without inertial forces).

Date of online publication

07.04.2021

Pages (from - to)

1817-1 - 1817-19

DOI

10.3390/ma14081817

URL

https://www.mdpi.com/1996-1944/14/8/1817

Comments

Article Number: 1817

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Ministry points / journal in years 2017-2021

140

Impact Factor

3,748

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.