Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body

Authors

[ 1 ] Instytut Mechaniki Stosowanej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2022

Published in

Journal of Fluid Mechanics

Journal year: 2022 | Journal volume: vol. 932

Article type

scientific article

Publication language

english

Keywords
EN
  • aerodynamics
  • flow control
  • wakes/jets
Abstract

EN We address a challenge of active flow control: the optimization of many actuation parameters guaranteeing fast convergence and avoiding suboptimal local minima. This challenge is addressed by a new optimizer, called the explorative gradient method (EGM). EGM alternatively performs one exploitive downhill simplex step and an explorative Latin hypercube sampling iteration. Thus, the convergence rate of a gradient based method is guaranteed while, at the same time, better minima are explored. For an analytical multi-modal test function, EGM is shown to significantly outperform the downhill simplex method, the random restart simplex, Latin hypercube sampling, Monte Carlo sampling and the genetic algorithm. EGM is applied to minimize the net drag power of the two-dimensional fluidic pinball benchmark with three cylinder rotations as actuation parameters. The net drag power is reduced by 29 % employing direct numerical simulations at a Reynolds number of 100 based on the cylinder diameter. This optimal actuation leads to 52 % drag reduction employing Coanda forcing for boat tailing and partial stabilization of vortex shedding. The price is an actuation energy corresponding to 23 % of the unforced parasitic drag power. EGM is also used to minimize drag of the 35∘ slanted Ahmed body employing distributed steady blowing with 10 inputs. 17 % drag reduction are achieved using Reynolds-averaged Navier–Stokes simulations at the Reynolds number ReH=1.9×105 based on the height of the Ahmed body. The wake is controlled with seven local jet-slot actuators at all trailing edges. Symmetric operation corresponds to five independent actuator groups at top, middle, bottom, top sides and bottom sides. Each slot actuator produces a uniform jet with the velocity and angle as free parameters, yielding 10 actuation parameters as free inputs. The optimal actuation emulates boat tailing by inward-directed blowing with velocities which are comparable to the oncoming velocity. We expect that EGM will be employed as efficient optimizer in many future active flow control plants as alternative or augmentation to pure gradient search or explorative methods.

Date of online publication

06.12.2021

Pages (from - to)

A7-1 - A7-48

DOI

10.1017/jfm.2021.974

URL

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/explorative-gradient-method-for-active-drag-reduction-of-the-fluidic-pinball-and-slanted-ahmed-body/B5EB31934532B5D0C05F1D0C2D1261CE

Comments

Article: A7

License type

CC BY (attribution alone)

Open Access Mode

czasopismo hybrydowe

Open Access Text Version

final published version

Date of Open Access to the publication

in press

Ministry points / journal

140

Impact Factor

3,7

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.