Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Enriching WPCs and NFPCs with Carbon Nanotubes and Graphene

Authors

[ 1 ] Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering

Year of publication

2022

Published in

Polymers

Journal year: 2022 | Journal volume: vol. 14 | Journal number: iss. 4

Article type

scientific article

Publication language

english

Keywords
EN
  • wood–plastic composites
  • natural fibre–plastic composites
  • carbon nanotubes
  • MWCNTs
  • graphene
  • graphene oxide
  • graphene nanoplatelets
  • hybrid composites
Abstract

EN Carbon nanotubes (CNTs) and graphene, with their unique mechanical, electrical, thermal, optical, and wettability properties, are very effective fillers for many types of composites. Recently, a number of studies have shown that CNTs and graphene may be integrated into wood–plastic composites (WPCs) and natural-fibre-reinforced polymer composites (NFPCs) to improve the existing performance of the WPCs/NFPCs as well as enabling their use in completely new areas of engineering. The following review analyses the results of the studies presented to date, from which it can be seen that that inclusion of CNTs/graphene may indeed improve the mechanical properties of the WPCs/NFPCs, while increasing their thermal conductivity, making them electroconductive, more photostable, less sensitive to water absorption, less flammable, and more thermally stable. This study indicates that the composition and methods of manufacturing of hybrid WPCs/NFPCs vary significantly between the samples, with a consequent impact on the level of improvement of specific properties. This review also shows that the incorporation of CNTs/graphene may enable new applications of WPCs/NFPCs, such as solar thermal energy storage devices, electromagnetic shielding, antistatic packaging, sensors, and heaters. Finally, this paper recognises key challenges in the study area, and proposes future work.

Pages (from - to)

745 -1 - 745 - 21

DOI

10.3390/polym14040745

URL

https://www.mdpi.com/2073-4360/14/4/745/htm

Comments

Article Number: 745

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

5

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.