Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Material independent effectiveness of workpiece vibration in μ-EDM drilling

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2022

Published in

Journal of Materials Research and Technology

Journal year: 2022 | Journal volume: vol. 18

Article type

scientific article

Publication language

english

Keywords
EN
  • micro-EDM
  • GPR
  • microholes
  • drilling
  • vibration
  • BeCu
  • Co29Cr6Mo
Abstract

EN The micro electrical discharge machining (μ-EDM) process is extensively applied for micro-hole drilling in difficult-to-cut materials used in industries including aerospace, automotive, and biomedical. However, the slow material removal and challenges in drilling deep holes, limits the wide range applications of μ-EDM. Although, several research proposed approach of workpiece vibration to improve the process performance, the ambiguity remains towards the influence of vibration on process outputs. In this work, experiments were conducted to assess effectiveness of vibration in improving machining rate, and depth, overcut and surface quality of drilling holes. It was witnessed that in absence of tool wear compensation, vibrating the workpiece does not significantly improve maximum attainable depth, however, it helps in drilling the hole faster. Entry side hole overcut was highly stochastic in nature and not significantly affected by vibration. On the machined surface, spillover from molten pool due to vibration is observed for material with higher conductivity. For modelling the outputs of this complex hybrid process, a previously unused technique- Gaussian Process Regression (GPR) is tried and found that it predicts with greater accuracy than multivariate regression technique.

Date of online publication

25.02.2022

Pages (from - to)

531 - 546

DOI

10.1016/j.jmrt.2022.02.063

URL

https://www.sciencedirect.com/science/article/pii/S2238785422002332?via%3Dihub

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

in press

Ministry points / journal

100

Impact Factor

6,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.