Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2022

Published in

Materials

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 5

Article type

scientific article

Publication language

english

Keywords
EN
  • COMSOL Multiphysics
  • hyperthermia
  • surface coating
  • finite element analyses
  • silver nanostructures
Abstract

EN The finite element analysis technique was used to investigate the suitability of silver nanorods, spheres, ellipsoids and core–shell structures for the hyperthermia treatment of cancer. The temperature of the silver nanostructures was raised from 42 to 46 °C, in order to kill the cancerous cells. The time taken by the nanostructures to attain this temperature, with external source heating, was also estimated. The heat transfer module in COMSOL Multiphysics was used for the finite element analysis of hyperthermia, based on silver nanostructures. The thermal response of different shapes of silver nanostructures was evaluated by placing them inside the spherical domain of the tumor tissue. The proposed geometries were heated at different time intervals. Optimization of the geometries was performed to achieve the best treatment temperature. It was observed that silver nanorods quickly attain the desired temperature, as compared to other shapes. The silver nanorods achieved the highest temperature of 44.3 °C among all the analyzed geometries. Moreover, the central volume, used to identify the thermal response, was the maximum for the silver nano-ellipsoids. Thermal equilibrium in the treatment region was attained after 0.5 μs of heating, which made these structures suitable for hyperthermia treatment.

Date of online publication

26.02.2022

Pages (from - to)

1786-1 - 1786-13

DOI

10.3390/ma15051786

URL

https://www.mdpi.com/1996-1944/15/5/1786

Comments

Article Number: 1786

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.