Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Microstructure and Mechanical Properties of Modified 316L Stainless Steel Alloy for Biomedical Applications Using Powder Metallurgy

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2022

Published in

Materials

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 8

Article type

scientific article

Publication language

english

Keywords
EN
  • AISI 316L stainless steel
  • mechanical properties
  • microhardness
  • tensile strength
  • compressive strength
Abstract

EN AISI 316L stainless steel (SS) is one of the extensively used biomaterials to produce implants and medical devices. It provides a low-cost solution with ample mechanical properties, corrosion resistance, and biocompatibility compared to its counterpart materials. However, the implants made of this material are subjected to a short life span in human physiological conditions leading to the leaching of metal ions, thus limiting its use as a biomaterial. In this research, the addition of boron, titanium, and niobium with varying concentrations in the SS matrix has been explored. This paper explores the impact of material composition on modified SS alloy’s physical and mechanical properties. The study’s outcomes specify that the microhardness increases for all the alloy compositions, with a maximum increase of 64.68% for the 2 wt.% niobium added SS alloy. On the other hand, the tensile strength decreased to 297.40 MPa for the alloy containing 0.25 wt.% boron and 2 wt.% titanium additions compared to a tensile strength of 572.50 MPa for pure SS. The compression strength increased from 776 MPa for pure SS to 1408 MPa for the alloy containing niobium and titanium additions in equal concentrations.

Date of online publication

12.04.2022

Pages (from - to)

2822-1 - 2822-19

DOI

10.3390/ma15082822

URL

https://www.mdpi.com/1996-1944/15/8/2822

Comments

Article Number: 2822

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,4

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.