Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum

Authors

[ 1 ] Instytut Technologii i Inżynierii Chemicznej, Wydział Technologii Chemicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[7.6] Chemical sciences

Year of publication

2022

Published in

Energies

Journal year: 2022 | Journal volume: vol. 15 | Journal number: iss. 10

Article type

scientific article

Publication language

english

Keywords
EN
  • crossflow filtration
  • irreversible resistance
  • reversible resistance
  • fouling
  • permeate flux
  • dissolved organic matter
Abstract

EN Although interest in the use of membranes for the concentration of microalgal biomass has steadily been growing, little is known regarding the phenomena of membrane fouling. In addition, more attention has been given to polymeric membranes compared to ceramic membranes, which have a longer life that is associated with a higher resistance to aggressive chemical cleaning. In this study, microfiltration (MF) and ultrafiltration (UF) of two microalgae species, Chlorella vulgaris and Monoraphidium contortum, were carried out using tubular crossflow ceramic membranes. Permeate flux was measured, resistance was calculated, and dissolved organic carbon (DOC) was determined. The flux reduction during the first 10 min of filtration was higher for MF than UF (>70% and <50%), and steady‐state permeate fluxes were <5% (for MF) and <25% (for UF) of initial (in m3 m−2 s−1) 6.2 × 10−4 (for MF) and 1.7 × 10−4 (for UF). Total resistances (in m−1) were in the ranges of 4.2–5.4 × 1012 (UF) and 2.6–3.1 × 1012 (MF) for M. contortum and C. vulgaris, respectively. DOC reduction was higher for UF membrane (>80%) than for MF (<66%) and DOC concentrations (mg C L−1) in permeates following MF and UF were about five and two, respectively. In conclusion, we demonstrated: (i) higher irreversible resistance for UF and reversible resistance for MF; (ii) permeate flux higher for UF and for M. contortum; (iii) the significant role of dissolved organic compounds in the formation of reversible resistance for MF and irreversible resistance for UF.

Date of online publication

19.05.2022

Pages (from - to)

3745-1 - 3745-12

DOI

10.3390/en15103745

URL

https://www.mdpi.com/1996-1073/15/10/3745

Comments

Article number: 3745

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Release date

19.05.2022

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3,2

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.