Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Front-end investigations of the coated particles of nuclear fuel samples - ion polishing method

Authors

[ 1 ] Instytut Badań Materiałowych i Inżynierii Kwantowej, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering

Year of publication

2022

Published in

Nuclear Engineering and Technology

Journal year: 2022 | Journal volume: vol. 54 | Journal number: iss. 6

Article type

scientific article

Publication language

english

Keywords
EN
  • TRISO particle
  • Raman spectroscopy
  • polishing methods
  • roughness profile
Abstract

EN The investigations of the coated-particles of nuclear fuel samples are carried out in three stages: front-end, irradiation in the reactor core, and post-irradiation examination. The front-end stage is the initial analysis of the failures rates of produced samples before they are placed in the reactor core. The purpose of the verification is to prepare the particles for an experiment that will determine the degree of damage to the coated particles at each stage. Before starting experiments with the samples, they must be properly prepared. Polishing the samples in order to uncover the inner layers is an important, initial experimental step. The authors of this paper used a novel way to prepare samples for testing - by applying an ion polisher. Mechanical polishing used frequently for sample preparations generates additional mechanical damages in the studied fuel particle, thus directly affecting the experimental results. The polishing methods were compared for three different coated particles using diagnostic methods such as Raman spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Based on the obtained results, it was concluded that the ion polishing method is better because the level of interference with the structures of the individual layers of the tested samples is much lower than with the mechanical method. The same technique is used for the fuel particles undergone ion implantation simulating radiation damage that can occur in the reactor core.

Date of online publication

08.12.2021

Pages (from - to)

1935 - 1946

DOI

10.1016/j.net.2021.12.003

URL

https://www.sciencedirect.com/science/article/pii/S1738573321006720?via%3Dihub

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

2,7

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.