Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Enhanced near-infrared emission of Er3+ as a synergistic effect of energy transfers in Bi3TeBO9:Yb3+/Er3+ phosphors

Authors

[ 1 ] Instytut Badań Materiałowych i Inżynierii Kwantowej, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ 2 ] Instytut Fizyki, Wydział Inżynierii Materiałowej i Fizyki Technicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.8] Materials engineering

Year of publication

2023

Published in

Journal of Luminescence

Journal year: 2023 | Journal volume: vol. 258

Article type

scientific article

Publication language

english

Keywords
EN
  • Bi3TeBO9
  • luminescence
  • rare earth ions
  • spectral converters
  • solar cells
Abstract

EN Enhanced near-infrared emission at 1531 nm of Er3+ ions excited by Bi3+ and/or Yb3+ ions was revealed in Bi3TeBO9:Yb3+/Er3+ phosphors. The microcrystalline powders investigated: Bi3TeBO9:Er3+, Bi3TeBO9:Yb3+ and Bi3TeBO9:Yb3+/Er3+ were synthesized by means of the modified Pechini method. Their hexagonal structure with P63 space group was confirmed by XRD measurements. The morphology of the above-mentioned samples was analyzed using SEM technique. The results of μ-Raman investigations showed low phonon energy of Bi3TeBO9 matrix. The characteristic Er3+ emission at 1531 nm assigned to the 4I13/2 → 4I15/2 transition in Bi3TeBO9:Er3+ and Bi3TeBO9:Yb3+/Er3+ powders was excited by Bi3+ or Yb3+ ions (the 1S0 → 3P1 or 2F7/2 → 2F5/2 transitions) upon their excitation at 327 or 975 nm, respectively. It was revealed that the effective energy transfer from the excited Bi3+ ions (at 327 nm) directly to Er3+ ions or indirectly to Er3+ ions both via the excitation of Bi3+ ions in VIS range or excitation of Yb3+ ions in the NIR range results in synergistic effect, which produces enhanced emission at 1531 nm of Er3+ ions in Bi3TeBO9:Yb3+/Er3+ system. Moreover, it was found that the effective energy transfer from the excited Yb3+ ions (at 975 nm) directly to Er3+ ions results in the efficient emission at 1531 nm of Er3+ ions. Furthermore, the calculations of energy transfer efficiency and quantum efficiency proved the effective energy transfer from Bi3+ to Yb3+ and from Yb3+ to Er3+ ions. The corresponding mechanisms of energy transfer processes in the investigated materials were discussed on the basis of reflectance, excitation and emission spectra and measured decay times. The results indicate a potential of the use of Bi3TeBO9:Yb3+/Er3+ powders as spectral converters in new generation of photovoltaic devices.

Date of online publication

05.03.2023

Pages (from - to)

119774-1 - 119774-10

DOI

10.1016/j.jlumin.2023.119774

URL

https://www.sciencedirect.com/science/article/pii/S0022231323001072?via%3Dihub

Comments

Article number: 119774

License type

Czasopismo hybrydowe

Ministry points / journal

100

Impact Factor

3,3

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.