Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement

Authors

[ 1 ] Instytut Inżynierii Środowiska i Instalacji Budowlanych, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 4

Article type

scientific article

Publication language

english

Keywords
EN
  • boiling
  • heat transfer enhancement
  • laser beam
  • surface treatment
Abstract

EN The laser treatment of surfaces enables the alteration of their morphology and makes them suitable for various applications. This paper discusses the use of a laser beam to develop surface features that enhance pool boiling heat transfer. Two types of structures (in the ‘macro’ and ‘micro’ scale) were created on the samples: microfins (grooves) and surface roughness. The impact of the pulse duration and scanning velocity on the height of the microfins and surface roughness at the bottom of the grooves was analyzed with a high precision optical profilometer and microscope. The results indicated that the highest microfins and surface roughness were obtained with a pulse duration of 250 ns and scanning velocity of 200 mm/s. In addition, the influence of the ‘macro’ and ‘micro’ scale modifications on the boiling heat transfer of distilled water and ethyl alcohol was studied on horizontal samples heated with an electric heater. The largest enhancement was obtained for the highest microfins and roughest surfaces, especially at small superheats. Heat flux dissipated from the samples containing microfins of 0.4 mm height was, maximally, over three times (for water) and two times (for ethanol) higher than for the samples with smaller microfins (0.2 mm high). Thus, a modification of a selected model of boiling heat transfer was developed so that it would be applicable to laser-processed surfaces. The correlation proved to be quite successful, with almost all experimental data falling within the ±100% agreement bands.

Date of online publication

06.02.2023

Pages (from - to)

1365-1 - 1365-21

DOI

10.3390/ma16041365

URL

https://www.mdpi.com/1996-1944/16/4/1365

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.