Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al–Si–Fe Alloys under an Electromagnetic Field

Authors

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Materials

Journal year: 2023 | Journal volume: vol. 16 | Journal number: iss. 9

Article type

scientific article

Publication language

english

Keywords
EN
  • electromagnetic stirring
  • aluminum alloys
  • solidification
  • dendrites
  • rosettes
  • iron phases
Abstract

EN Natural convection is present in all liquid alloys whereas forced convection may be applied as the method to improve material properties. To understand the effect of forced convection, the solidification in simple cylindrical samples was studied using a rotating magnetic field with a low cooling rate and low temperature gradient. The composition of Al–Si–Fe alloys was chosen to enable independent growth or joint growth of occurring α-Al, β-Al5FeSi, δ-AlFeSi_T4 phases and Si crystals and analysis of structure modifications. Stirring produced rosettes instead of equiaxed dendrites, which altered the secondary dendrite arm spacing and the specific surface of α-Al and also modified β-Al5FeSi. The melt flow caused a modification of iron rich δ-AlFeSi_T4 phases and gathered them inside the sample of the β/Si alloy, where δ together with Si were the first precipitating phases. The separation of δ and β phases and Si crystals was found by their joint growth along the monovariant line. A reduction in the amount of Si crystals and the formation of a thin Si-rich layer outside the sample was observed in the hypereutectic alloy. The separation and reduction in iron-rich phases may play a role in the removal of Fe from Al–Si alloys, and the control of Si may be applied in materials for the solar photovoltaic industry.

Date of online publication

23.04.2023

Pages (from - to)

3304-1 - 3304-31

DOI

10.3390/ma16093304

URL

https://www.mdpi.com/1996-1944/16/9/3304

Comments

Article Number: 3304

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.