Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams

Authors

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Polymers

Journal year: 2023 | Journal volume: vol. 15 | Journal number: iss. 18

Article type

scientific article

Publication language

english

Keywords
EN
  • rigid polyurethane foams
  • bio-polyols
  • renewable resources
  • mechanical properties
  • physical properties
Abstract

EN New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of modified foams was evaluated. As oxirane ring-opening agents, 1-hexanol and 1.6-hexanediol were used to obtain bio-polyols with different functionality and hydroxyl numbers. Bio-polyols in different ratios were used to modify the polyurethane (PUR) composition, replacing 40 wt.% petrochemical polyol. The mass ratio of the used bio-polyols (1:0, 3:1, 1:1, 1:3, 0:1) affected the course of the foaming process of the PUR composition as well as the cellular structure and the physical and mechanical properties of the obtained foams. In general, the modification of the reference PUR system with the applied bio-polyols improved the cellular structure of the foam, reducing the size of the cells. Replacing the petrochemical polyol with the bio-polyols did not cause major differences in the apparent density (40–43 kg/m3), closed-cell content (87–89%), thermal conductivity (25–26 mW⋅(m⋅K)−1), brittleness (4.7–7.5%), or dimensional stability (<0.7%) of RPURFs. The compressive strength at 10% deformation was in the range of 190–260 and 120–190 kPa, respectively, for directions parallel and perpendicular to the direction of foam growth. DMA analysis confirmed that an increase in the bio-polyol of low functionality in the bio-polyol mixture reduced the compressive strength of the modified foams.

Date of online publication

05.09.2023

Pages (from - to)

3660-1 - 3660-18

DOI

10.3390/polym15183660

URL

https://www.mdpi.com/2073-4360/15/18/3660

Comments

Article Number: 3660

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

4,7

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.