Screw preload loss under occlusal load as a predictor of loosening risk in varying dental implant designs
[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] employee
2023
scientific article
english
- Dental implant
- Screw loosening
- Finite element analysis
EN Purpose: Screw loosening is a critical aspect of an implant design, as it can lead to implant failure. This study proposes a methodology and qualitatively assesses the potential of screw loosening risk for various types of screw heads and implant fixture-abutment connections. It is assumed that the risk of screw loosening is related to the drop in loosening moment under occlusal loads. The methodology and an assumption is verified by confronting the results with laboratory tests. Methods: Numerical simulations supplemented with semi-empirical equations were employed to estimate a loosening moment change under occlusal loads. The loosening risk was estimated by comparing the value before and after application of a compressive occlusal load of 150N. The procedure was carried out for 289 implant designs with smooth transition between flat to tapered shape of a screw head and an fixture-abutment connection. All analyses were conducted using Abaqus software. Pearson and Spearman correlation coefficients for normalised change in a screw loosening moment drop has been computed for numerical and laboratory tests. Results: The statistical analysis (Pearson, ρ = 0.8, Spearman, rs = 0.85) indicates very high correlation and confirms that the general tendencies observed in laboratory tests are reflected in the proposed procedure. The procedure was used for various geometries and the following results are presented: a screw loosening drop, implant stiffness and a tightening moment. The loosening moment drop achieves the extreme values of 6% and 24%. The biggest drop is an effect of a conical implant-abutment connection and a flat screw head while the lowest was recorded for a flat implant-abutment interface regardless of a screw head type. A low drop is also observed for a strongly conical screw head. Conclusions: The proposed methodology exhibited very good correlation when confronted with laboratory tests, supporting a screw preload reduction under occlusal load as a key factor in screw loosening. Analysis across a wide spectrum of implant designs revealed geometry significantly impacts loosening potential under occlusal loads. Two key features were identified as favourable - an abutment-fixture butt joint and a tapered screw. The results also enable prediction of qualitative geometry effects on loosening risk.
12.10.2023
106165-1 - 106165-11
Article Number: 106165
CC BY (attribution alone)
czasopismo hybrydowe
final published version
in press
100
3,3