Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Controller for an Asymmetric Underactuated Hovercraft in Terms of Quasi-Velocities

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technology

Year of publication

2023

Published in

Applied Sciences

Journal year: 2023 | Journal volume: vol. 13 | Journal number: iss. 8

Article type

scientific article

Publication language

english

Keywords
EN
  • underactuated hovercraft
  • nonlinear tracking control
  • simulation
Abstract

EN In this paper, a nonlinear controller for tracking a desired trajectory for an underactuated hovercraft is considered. It is a modification of a method known from the literature. However, the control algorithm considered here has two important features that differ from the mentioned control strategy. First, it concerns the case when the center of mass does not coincide with the geometric center, which results in additional forces and moments of force. The lack of symmetry causes the original trajectory tracking method not to take this fact into account, while the proposed approach is a generalization of the known concept. Here, a diagonalization of the inertia matrix has been applied, by means of a velocity transformation, which made it possible to reduce the symmetric matrix to a diagonal form. Secondly, the transformed quasi-velocity equations of motion allow some insight into the dynamics of the vehicle as it moves, which was not shown in the source work. The offered approach was verified by numerical tests for a hovercraft model with three DOF and for two desired trajectories. The method can be useful in preliminary simulation studies at the controller selection stage without experimental validation.

Date of online publication

14.04.2023

Pages (from - to)

4965-1 - 4965-20

DOI

10.3390/app13084965

URL

https://www.mdpi.com/2076-3417/13/8/4965

Comments

Article Number: 4965

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

2,7 [List 2022]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.