Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

A New Theory of Damage Estimation and Fatigue Life Prediction

Authors

[ 1 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Politechnika Poznańska | [ P ] employee | [ D ] phd student

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2023

Published in

Misan Journal of Engineering Sciences

Journal year: 2023 | Journal volume: vol. 2 | Journal number: no. 2

Article type

scientific article

Publication language

english

Keywords
EN
  • Fatigue life prediction
  • Damage estimation
  • Fatigue test
  • Bearing
  • Premature failure
Abstract

EN There are a considerable number of fatigue damage estimation theories and fatigue life prediction of mechanical components. The most popular one is Palmgren-Minor (P-M) theory. This theory has been used in the standards for selecting the bearing –as a component subject to fatigue loading- and for expecting the bearings lives. In Wind Turbine Gearboxes (WTGs), the bearings were selected to be without maintenance for 20 to 25 years; however, in real service life, the bearing suffer from premature failure within a life span of quite less than the design life (1 to 5 years). A new applicable methodology and a procedure of calculation for damage estimation due to fatigue loading and predicting the life has been suggested and tested. Results of 20 rolling and sliding tests which conducted under severe contact loading are used to test this method. The suggested method depends on calculating the number of operating cycles under a specific contact loading level to an equivalent number of loading cycles under the average loading level. This method depends on the area under the S-N curve without any correction or loading factors and can be used to predict the WTG bearings failure to manage the maintenance because the current life prediction standards have very high percentages of error (> 400%). The reliability of this approach can be further verified by utilizing actual operational data from Supervisory Control and Data Acquisition (SCADA), used for overseeing wind turbine operations. Additional examinations are necessary to confirm the dependability of this novel method.

Pages (from - to)

1 - 11

URL

https://www.iasj.net/iasj/download/d3ac4a28a0f0331a

License type

CC BY-NC (attribution - noncommercial)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

5

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.