Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Biobased polymer nanocomposites prepared by in situ polymerization: comparison between carbon and mineral nanofillers

Authors

[ 1 ] Instytut Technologii Materiałów, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2024

Published in

Journal of Materials Science

Journal year: 2024 | Journal volume: vol. 59

Article type

scientific article

Publication language

english

Abstract

EN Two series based on poly(propylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) (PPF-b-F-PTMO) containing carbon and mineral nanofillers that differ in shape (1D and 2D) were synthesized via in situ polymerization. The influence of the addition of the 1D-type nanoparticle, i.e., carbon nanofibers (CNFs) and halloysite nanotubes (HNTs), and the so-called 2D-type, i.e., graphene nanoplatelets (GNPs) and organoclay (C20A), on the properties of a biobased block copolymer was analyzed. The dispersion of nanoadditives in the nanocomposites was determined using a scanning electron microscope (SEM). The thermal properties were studied employing differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The introduction of nanoparticles increased the crystallinity (Xc) and the mean values of tensile modulus (E) of the bionanocomposites. In turn, one observed that the decrease in the limited viscosity number (LVN) was visible along with incorporating nanoadditives. The synthesized polymer bionanocomposites reveal the mechanical properties of elastomers during mechanical testing. Moreover, the good processability of the obtained materials by injection molding combined with the comprehensive ability to change mechanical and thermal properties of PPF-b-F-PTMO by tailoring the type and content of the nanofillers can indicate their possible applications in packaging, automotive, sports, construction, and many other industries.

Date of online publication

22.07.2024

Pages (from - to)

13805 - 13823

DOI

10.1007/s10853-024-10025-8

URL

https://link.springer.com/article/10.1007/s10853-024-10025-8

License type

CC BY (attribution alone)

Open Access Mode

czasopismo hybrydowe

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

100

Impact Factor

3,5 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.