Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Two 3D Fractal-Based Approaches for Topographical Characterization: Richardson Patchwork versus Sdr

Authors

[ 1 ] Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ 2 ] Instytut Technologii Mechanicznej, Wydział Inżynierii Mechanicznej, Politechnika Poznańska | [ SzD ] doctoral school student | [ P ] employee

Scientific discipline (Law 2.0)

[2.9] Mechanical engineering

Year of publication

2024

Published in

Materials

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 10

Article type

scientific article

Publication language

english

Keywords
EN
  • multiscale analysis
  • surface topography
  • fractal-based analysis
  • Sdr parameter
Abstract

EN Various methods exist for multiscale characterization of surface topographies, each offering unique insights and applications. The study focuses on fractal-based approaches, distinguishing themselves by leveraging fractals to analyze surface complexity. Specifically, the Richardson Patchwork method, used in the ASME B46.1 and ISO 25178 standards, is compared to the Sdr parameter derived from ISO 25178-2, with a low-pass Gaussian filter for multiscale characterization. The comparison is performed from the relative area calculated on topographies of TA6V samples grit blasted with different pressures and blasting materials (media). The surfaces obtained by grit blasting have fractal-like characteristics over the scales studied, enabling the analysis of area development at multiple levels based on pressure and media. The relative area is similar for both methods, regardless of the complexity of the topographies. The relevance scale for each calculation method that significantly represents the effect of grit blasting pressure on the increased value of the relative area is a tiling of 7657.64 µm² of triangle area for the Patchwork method and a 124.6 µm cut-off for the low-pass Gaussian filter of the Sdr method. These results could facilitate a standard, friendly, new fractal method for multiscale characterization of the relative area.

Date of online publication

16.05.2024

Pages (from - to)

2386-1 - 2386-19

DOI

10.3390/ma17102386

URL

https://www.mdpi.com/1996-1944/17/10/2386

Comments

Article Number: 2386

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Ministry points / journal

140

Impact Factor

3,1 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.