Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Goat Manure Potential as a Substrate for Biomethane Production—An Experiment for Photofermentation

Authors

[ 1 ] Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technologies

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 16

Article type

scientific article

Publication language

english

Keywords
EN
  • goat manure
  • substrate
  • biomethane
  • photocatalysis
Abstract

EN This article presents the current state of biogas (biomethane) production technology—an example of the use of goat manure in terms of photofermentation efficiency. The theoretical and experimental potential of biomethane using biodegradability for anaerobic fermentation of goat manure was indicated. Goat manure was tested for its elemental composition to determine the suitability of this raw material for biogas production. The quality of biogas produced under atmospheric conditions from goat manure placed in a reactor (photodigester) was assessed. An attempt was made to determine the process conditions for immobilization on a goat manure bed (depending on the research material collected), which allows for demonstrating the activity of the fermentation bacterial flora, thus influencing the amount of biogas (biomethane) produced in the reactor. A mechanism for the photofermentation process involving the production of biomethane was developed. The novelty of this article is the development of the use of goat manure in an innovative way, pointing to the development of the biomethane industry. When comparing goat manure, active group (compact bed), it should be noted that K 3.132%, Na 0.266%, Ca 1.909% and Mg 0.993% are lower values compared to the material with values of K 3.397%, Na 0.284%, Ca 1.813% and Mg 0.990% which are higher. This is undoubtedly due to the presence of nutrients in the deposit that support the biomethane production process. The active group (compact bed) material A shows a dynamic increase in biomethane production with lower nutrient values. However, material B, having a higher percentage of ingredients, shows stabilization of biomethane production after the sixth month of the process. Technological trends and future prospects for the biomethane sector were initiated.

Pages (from - to)

3967-1 - 3967-29

DOI

10.3390/en17163967

URL

https://www.mdpi.com/1996-1073/17/16/3967

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.