Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download file Download BibTeX

Title

Research on Carbon Footprint Reduction During Hydrogen Co-Combustion in a Turbojet Engine

Authors

[ 1 ] Instytut Energetyki Cieplnej, Wydział Inżynierii Środowiska i Energetyki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.10] Environmental engineering, mining and energy

Year of publication

2024

Published in

Energies

Journal year: 2024 | Journal volume: vol. 17 | Journal number: iss. 21

Article type

scientific article

Publication language

english

Keywords
EN
  • carbon footprint
  • co-combustion
  • hydrogen
  • turbojet engine
  • emission
Abstract

EN The paper presents experimental studies on the effect of co-combustion of aviation kerosene with hydrogen in the GTM400 turbojet engine on the change in the carbon footprint generated by the engine in relation to its standard operation without hydrogen in the fuel. This research is in line with current research and development trends carried out in the EU, linking them to the issues of the European Green Deal, the Fit for 55 directive and current environmental trends in aviation and energy. The main objective of the research was to check the effect of hydrogen co-combustion in a turbojet engine on the change of the carbon footprint, while a secondary objective was to verify the impact of higher exhaust gas temperatures generated by the new, high-calorific fuel on the secondary generation of nitrogen oxides (NOx), especially in the thermal mechanism, as an undesirable effect. The research shows that the co-combustion of hydrogen with aviation kerosene in a turbojet engine reduces the carbon footprint (reduction of CO2 maximum of 15% and CO emissions maximum of 24%), but also increases the emission of nitrogen oxides (NOx) maximum of 58%, including those generated in the thermal mechanism (significant increase in the temperature of exhaust gases), moreover, the increase in nitrogen oxide emissions is proportional to the amount of co-combusted hydrogen, which is directly related to the stoichiometry of the combustion process. The main conclusion of the research is that technologies for the combustion or co-combustion of hydrogen in turbojet engines require further research and development, mainly on the side of the use of excess exhaust gas temperature generated during combustion and methods of reducing secondary nitrogen oxides.

Pages (from - to)

5397-1 - 5397-16

DOI

10.3390/en17215397

URL

https://www.mdpi.com/1996-1073/17/21/5397

Comments

Article number: 5397

License type

CC BY (attribution alone)

Open Access Mode

open journal

Open Access Text Version

final published version

Date of Open Access to the publication

at the time of publication

Full text of article

Download file

Access level to full text

public

Ministry points / journal

140

Impact Factor

3 [List 2023]

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.