Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

Robust neural-network-based fault detection with sequential D-optimum bounded-error input design

Authors

[ 1 ] Katedra Ergonomii i Inżynierii Jakości, Wydział Inżynierii Zarządzania, Politechnika Poznańska | [ 2 ] Katedra Zarządzania Produkcją i Logistyki, Wydział Inżynierii Zarządzania, Politechnika Poznańska | [ P ] employee

Year of publication

2015

Published in

IFAC-PapersOnLine

Journal year: 2015 | Journal volume: vol. 48 | Journal number: iss. 21

Article type

scientific article

Publication language

english

Keywords
EN
  • neural networks
  • system identification
  • optimum experiment design
  • fault detection
  • robustness
  • bounded disturbances
Pages (from - to)

434 - 439

DOI

10.1016/j.ifacol.2015.09.565

Presented on

9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS, 2-4.09.2015, Paris, France

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.