W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

On scalability, generalization, and hybridization of coevolutionary learning : a case study for Othello

Autorzy

[ 1 ] Instytut Informatyki, Wydział Informatyki, Politechnika Poznańska | [ P ] pracownik

Rok publikacji

2013

Opublikowano w

IEEE Transactions on Computational Intelligence and AI in Games

Rocznik: 2013 | Tom: vol. 5 | Numer: iss. 3

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • coevolution
  • n-tuple systems
  • Othello
  • temporal difference learning (TDL)
Streszczenie

EN This study investigates different methods of learning to play the game of Othello. The main questions posed concern scalability of algorithms with respect to the search space size and their capability to generalize and produce players that fare well against various opponents. The considered algorithms represent strategies as n-tuple networks, and employ self-play temporal difference learning (TDL), evolutionary learning (EL) and coevolutionary learning (CEL), and hybrids thereof. To assess the performance, three different measures are used: score against an a priori given opponent (a fixed heuristic strategy), against opponents trained by other methods (round-robin tournament), and against the top-ranked players from the online Othello League. We demonstrate that although evolutionary-based methods yield players that fare best against a fixed heuristic player, it is the coevolutionary temporal difference learning (CTDL), a hybrid of coevolution and TDL, that generalizes better and proves superior when confronted with a pool of previously unseen opponents. Moreover, CTDL scales well with the size of representation, attaining better results for larger n-tuple networks. By showing that a strategy learned in this way wins against the top entries from the Othello League, we conclude that it is one of the best 1-ply Othello players obtained to date without explicit use of human knowledge.

Strony (od-do)

214 - 226

DOI

10.1109/TCIAIG.2013.2258919

URL

https://ieeexplore.ieee.org/document/6504736

Punktacja Ministerstwa / czasopismo

30

Impact Factor

1,167

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.