Depending on the amount of data to process, file generation may take longer.

If it takes too long to generate, you can limit the data by, for example, reducing the range of years.

Article

Download BibTeX

Title

A machine learning approach for integration of spatial development plans based on natural language processing

Authors

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] employee

Scientific discipline (Law 2.0)

[2.2] Automation, electronics, electrical engineering and space technologies

Year of publication

2022

Published in

Sustainable Cities and Society

Journal year: 2022 | Journal volume: vol. 76

Article type

scientific article

Publication language

english

Keywords
EN
  • spatial planning
  • spatial development plan
  • unsupervised machine learning
  • LSTM
  • GRU
  • neural networks
Date of online publication

03.11.2021

Pages (from - to)

103479-1 - 103479-44

DOI

10.1016/j.scs.2021.103479

URL

https://www.sciencedirect.com/science/article/pii/S2210670721007460#!

Comments

Article Number: 103479

License type

CC BY-NC-ND (attribution - noncommercial - no derivatives)

Open Access Mode

czasopismo hybrydowe

Open Access Text Version

final author's version

Date of Open Access to the publication

in press

Ministry points / journal

100

Impact Factor

11,7

This website uses cookies to remember the authenticated session of the user. For more information, read about Cookies and Privacy Policy.