Parametric Optimization of Thin-Walled 3D Beams with Perforation Based on Homogenization and Soft Computing
[ 1 ] Instytut Analizy Konstrukcji, Wydział Inżynierii Lądowej i Transportu, Politechnika Poznańska | [ P ] pracownik
2022
artykuł naukowy
angielski
- homogenization
- thin-walled structure
- shell-to-beam
- radial basis functions
- artificial neural networks
- parametrized optimization
EN The production of thin-walled beams with various cross-sections is increasingly automated and digitized. This allows producing complicated cross-section shapes with a very high precision. Thus, a new opportunity has appeared to optimize these types of products. The optimized parameters are not only the lengths of the individual sections of the cross section, but also the bending angles and openings along the beam length. The simultaneous maximization of the compressive, bending and shear stiffness as well as the minimization of the production cost or the weight of the element makes the problem a multi-criteria issue. The paper proposes a complete procedure for optimizing various open sections of thin-walled beam with different openings along its length. The procedure is based on the developed algorithms for traditional and soft computing optimization as well as the original numerical homogenization method. Although the work uses the finite element method (FEM), no computational stress analyses are required, i.e., solving the system of equations, except for building a full stiffness matrix of the optimized element. The shell-to-beam homogenization procedure used is based on equivalence strain energy between the full 3D representative volume element (RVE) and its beam representation. The proposed procedure allows for quick optimization of any open sections of thin-walled beams in a few simple steps. The procedure can be easily implemented in any development environment, for instance in MATLAB, as it was done in this paper.
29.03.2022
2520-1 - 2520-21
Article Number: 2520
CC BY (uznanie autorstwa)
otwarte czasopismo
ostateczna wersja opublikowana
w momencie opublikowania
140
3,4