W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Artykuł

Pobierz BibTeX

Tytuł

Classification of Spatial Objects with the Use of Graph Neural Networks

Autorzy

[ 1 ] Instytut Automatyki i Robotyki, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[2.2] Automatyka, elektronika, elektrotechnika i technologie kosmiczne

Rok publikacji

2023

Opublikowano w

ISPRS International Journal of Geo-Information

Rocznik: 2023 | Tom: vol. 12 | Numer: iss. 3

Typ artykułu

artykuł naukowy

Język publikacji

angielski

Słowa kluczowe
EN
  • graph neural networks
  • spatial objects
  • spatial development plan
  • supervised classification
  • machine learning
Streszczenie

EN Classification is one of the most-common machine learning tasks. In the field of GIS, deep-neural-network-based classification algorithms are mainly used in the field of remote sensing, for example for image classification. In the case of spatial data in the form of polygons or lines, the representation of the data in the form of a graph enables the use of graph neural networks (GNNs) to classify spatial objects, taking into account their topology. In this article, a method for multi-class classification of spatial objects using GNNs is proposed. The method was compared to two others that are based solely on text classification or text classification and an adjacency matrix. The use case for the developed method was the classification of planning zones in local spatial development plans. The experiments indicated that information about the topology of objects has a significant impact on improving the classification results using GNNs. It is also important to take into account different input parameters, such as the document length, the form of the training data representation, or the network architecture used, in order to optimize the model.

Data udostępnienia online

21.02.2023

Strony (od-do)

83-1 - 83-17

DOI

10.3390/ijgi12030083

URL

https://www.mdpi.com/2220-9964/12/3/83

Uwagi

Article Number: 83

Typ licencji

CC BY (uznanie autorstwa)

Tryb otwartego dostępu

otwarte czasopismo

Wersja tekstu w otwartym dostępie

ostateczna wersja opublikowana

Czas udostępnienia publikacji w sposób otwarty

w momencie opublikowania

Punktacja Ministerstwa / czasopismo

100

Impact Factor

2,8

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.