W zależności od ilości danych do przetworzenia generowanie pliku może się wydłużyć.

Jeśli generowanie trwa zbyt długo można ograniczyć dane np. zmniejszając zakres lat.

Rozdział

Pobierz BibTeX

Tytuł

Simulation of Discovering Market Opportunities Using AI Methods

Autorzy

[ 1 ] Instytut Zarządzania i Systemów Informacyjnych, Wydział Inżynierii Zarządzania, Politechnika Poznańska | [ P ] pracownik

Dyscyplina naukowa (Ustawa 2.0)

[6.6] Nauki o zarządzaniu i jakości

Rok publikacji

2024

Typ rozdziału

rozdział w monografii naukowej / referat

Język publikacji

angielski

Słowa kluczowe
EN
  • Opportunity Discovery
  • Artificial Intelligence
  • Markov Chain Monte Carlo Method
  • Metropolis-Hastings Method
  • Alternative Products Portfolio
Streszczenie

EN Due to the strong turbulence that exists in the business environment, the view is sometimes articulated that the time horizon of decisions is no longer a hallmark of strategic management. Opposing views argue that a turbulent environment changes the trajectory of reaching future objectives determined by strategic decisions. Such trajectories require the company to be agile, which is manifested by seizing opportunities. Opportunities arise because the environment is volatile. An example of market opportunity is the unsatisfied demand for products. Buyers are driven by different motives when choosing between products that are alternative to them. From the producer's point of view, the purchase is therefore random. As a consequence, the alignment of the offered product portfolio with the actual purchasing decisions of customers is undetermined. In this article, we address the problem of determining the product portfolio structure expected by customers, i.e. one that is consistent with their future purchasing decisions. We hypothesise that this problem can be represented by a model of flows between alternative resources. Problems of this type are solved using Markov Chain Monte Carlo (MCMC) methods. In order to discover the expected demand (opportunity), we simulated the flow model we developed using the Metropolis-Hastings algorithm, which is a special case of the MCMC method used in AI. Due to operating on numerical data, such simulations fall under quantitative research. In the article, we present a model of customer flows between alternative products and then the simulation result, which is the expected value of these flows (stationary point). We convert this value into the structure of the product portfolio using a model of customer purchasing decisions that we have developed. The obtained results confirm the effectiveness of our method and have significant practical value, especially for SMEs. It also enables the assessment of the company's product strategy based on real sales data. The application of our methodology is limited to discovering opportunities in situations where purchasing decisions are influenced by variable environmental factors, causing irregular purchases by individual customers. It is useful, for example, in discovering opportunities in markets such as Household Articles, Furniture, Vehicles, Equipment Repairs, Construction, and many others.

Strony (od-do)

1108 - 1117

URL

https://papers.academic-conferences.org/index.php/eckm/article/view/2983/2413

Książka

Proceedings of the 25th European Conference on Knowledge Management ECKM 2024

Zaprezentowany na

25th European Conference on Knowledge Management, 5-6.09.2024, Veszprém, Hungary

Punktacja Ministerstwa / rozdział

5

Punktacja Ministerstwa / rozdział (nauki humanistyczne, społeczne i teologiczne)

5

Punktacja Ministerstwa / konferencja (CORE)

70

Ta strona używa plików Cookies, w celu zapamiętania uwierzytelnionej sesji użytkownika. Aby dowiedzieć się więcej przeczytaj o plikach Cookies i Polityce Prywatności.