A New Approach to Design Symmetry Invariant Neural Networks
[ 1 ] Instytut Robotyki i Inteligencji Maszynowej, Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska | [ SzD ] doktorant ze Szkoły Doktorskiej | [ P ] pracownik
2021
rozdział w monografii naukowej / referat
angielski
- machine learning
- neural networks
- group invariance
- G-invariance
- geometric deep learning
EN We investigate a new method to design G -invariant neural networks that approximate functions invariant to the action of a given permutation subgroup G of the symmetric group on input data. The key element of the new network architecture is a G -invariant transformation module, which produces a G -invariant latent representation of the input data. This latent representation is then processed with a multi-layer perceptron in the network. We prove the universality of the new architecture, discuss its properties and highlight its computational and memory efficiency. Theoretical considerations are supported by numerical experiments involving different network configurations, which demonstrate the efficiency and strong generalization properties of the new approach to design symmetry invariant neural networks, in comparison to other G -invariant neural architectures.
1 - 8
20
140